مقایسۀ توابع یادگیری شبکۀ عصبی در مدلسازی رواناب
Authors
Abstract:
پیشبینی دقیق جریان در رودخانهها یکی از ارکان مهم در مدیریت منابع آبهای سطحی بهویژه اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیهاست. درحقیقت، حصول روشهای مناسب و دقیق در پیشبینی جریان رودخانهها را میتوان بهعنوان یکی از چالشهای مهم در فرایند مدیریت و مهندسی منابع آب دانست؛ اگرچه تحقیقات وسیعی در خصوص کاربرد روشهای متکی بر شبکههای عصبی مصنوعی دقت این روشها بر روشهای متداول آماری مانند روشهای اتورگسیو و میانگین متحرک ارائه شده است. در این تحقیقات برای یافتن بهترین ساختار برای شبکۀ عصبی تنها به تغییر تعداد لایههای پنهان و تعداد نورونها اکتفا میشود و بهدلیل پیچیدگی حاکم بر انتخاب و معماری شبکۀ مناسب، استفاده از آنها در عمل بهطور مناسب توسعه نیافته است. در این تحقیق تعداد 15 تابع یادگیری در شبکۀ عصبی بررسی شد و نتایج نشان داد در ساختار شبکه با یک لایۀ پنهان (ANN1) تابع یادگیری learnglv1، learnh و learnis بهترتیب با MSE برابر 000158/0، 000185/0 و 000188/0 و در مدل ساختار شبکه با دو لایۀ پنهان ANN2 توابع یادگیری learnh، learnsomb و learncon بهترتیب با MSE برابر 000154/0، 000173/0 و 000176/0، عملکرد مناسبتری نسبت به دیگر توابع یادگیری داشتهاند. از سوی دیگر در ده مرتبه اجرای دو مدل، دو تابع یادگیری learnsom و learngdm در مدل ANN1 و learnh و learnos در مدل ANN2، بیشترین تکرار را در بین بهترین توابع یادگیری، داشتهاند و بنابراین، هنگام استفاده از شبکۀ پسانتشار خطا (که تابع یادگیری آن learngdm است) بهتر است تعداد لایۀ پنهان بیشتر از یکی نباشد؛ زیرا در این صورت شانس رسیدن به جواب مناسب بیشتر خواهد بود، اما اگر بهدنبال زیادکردن عملکرد شبکه با افزایش تعداد لایۀ پنهان باشیم بهتر است با احتیاط از پیشفرض شبکه و بهطور مشخص از learngdm استفاده شود. .
similar resources
مقایسۀ عملکرد الگوریتمهای مختلف یادگیری شبکۀ عصبی در پیشبینی الگوی توزیع سفید بالک پنبه Bemisia tabaci در خیارکاریهای بهبهان
امروزه تشریح الگوهای پراکندگی حشرات با استفاده از روشهای درونیابی و برآورد تراکم بهمنظور بررسی امکان مدیریت و کنترل متناسب با مکان آنها مورد توجه بسیاری از محققان قرار گرفته است. این پژوهش بهمنظور ارزیابی قابلیت الگوریتمهای مختلف شبکۀ عصبی پرسپترون چندلایهای (MLP) در درونیابی و برآورد جمعیت سفید بالک پنبه در نقاط نمونهبرداری نشده و نیز ترسیم نقشۀ پراکنش آن انجام شد. برای ارزیابی قابلی...
full textپهنهبندی خطر زمینلغزش در حوضۀ آبخیز طالقان با استفاده از روش سیستمهای هوشمند (روش شبکۀ عصبی مصنوعی مبتنی بر توابع پایهای گوسی و شبکۀ عصبی پرسپترون)
زمینلغزشها هر سال خسارتهای مالی و جانی زیادی بهبار میآورند. نقشههای پهنهبندی خطر زمینلغزش میتوانند به کاهش این خسارتها کمک کنند. حوزۀ آبخیز طالقان از جمله حوزههای مستعد زمینلغزش است که بررسی شده است. در این مقاله به پهنهبندی خطر زمینلغزش در این منطقه و در مقیاس 50000/1، و با در نظر داشتن لایههای اطلاعاتی پراکندگی لغزشها، شیب، برای شیب، زمینشناسی (لیتولوژی)، فاصله از گسلها، فا...
full textمقایسۀ مدل رگرسیون درختی، شبکۀ عصبی مصنوعی و هارگریوز سامانی در برآورد تبخیرتعرق مرجع مناطق خشک
هدف از این تحقیق، ارزیابی سه مدل شبکۀ عصبی مصنوعی، رگرسیون درختی و مدل هارگریوز سامانی برای برآورد تبخیرتعرق گیاه مرجع بود. بدین منظور از اطلاعات هواشناسی استانهای سیستان و بلوچستان، کرمان، یزد و خراسان جنوبی در دورۀ آماری 1998-2008 استفاده شد. با توجه به تأثیر سرعت باد بر میزان تبخیرتعرق منطقه، برآورد تبخیرتعرق براساس تغییرات سرعت باد در قالب سه گروه شامل ایستگاههایی با سرعت باد کمتر از 48/2...
full textمقایسۀ مدل شبکۀ عصبی مصنوعی با فرایند تحلیل سلسلهمراتبی در ارزیابی خطر زمینلغزش
زمینلغزش یکی از مخاطرات طبیعی در مناطق کوهستانی بهشمار میرود که هرساله به خسارات زیادی منجر میشود. حوضۀ دوآب الشتر با داشتن چهرهای کوهستانی و مرتفع و شرایط طبیعی مختلف دارای استعداد بالقوۀ زمینلغزش است. هدف این تحقیق مقایسۀ مدل شبکۀ عصبی مصنوعی با فرایند تحلیل سلسلهمراتبی، بهمنظور ارزیابی خطر زمینلغزش در حوضۀ دوآب الشتر است. بدین منظور ابتدا پارامترهای مؤثر در وقوع زمینلغزش استخراج و ...
full textمدلسازی حجم تجاری درختان تودههای آمیختۀ راش جنگلهای هیرکانی با استفاده از شبکۀ عصبی مصنوعی
پیشبینی دقیق حجم درختان سرپا برحسب متر مکعب مبنای برآورد هر چه دقیقتر مقدار رویش، برداشت مجاز، ترسیب کربن زیتودۀ هوایی درختان و مدیریت بهینۀ جنگل براساس اصل توسعۀ پایدار محسوب میشود. از اینرو، تحقیق حاضر با استفاده از شبکۀ عصبی مصنوعی در پی مدلسازی و پیشبینی حجم تجاری با حداکثر قطعیت است. پژوهش موردی جنگل سری 3 گلندرود نور بوده و اطلاعات دریافتی مستخرج از جدولهای تجدید حجم ادارۀ کل منابع...
full textمقایسۀ مدل رگرسیون درختی، شبکۀ عصبی مصنوعی و هارگریوز سامانی در برآورد تبخیرتعرق مرجع مناطق خشک
هدف از این تحقیق، ارزیابی سه مدل شبکۀ عصبی مصنوعی، رگرسیون درختی و مدل هارگریوز سامانی برای برآورد تبخیرتعرق گیاه مرجع بود. بدین منظور از اطلاعات هواشناسی استانهای سیستان و بلوچستان، کرمان، یزد و خراسان جنوبی در دورۀ آماری 1998-2008 استفاده شد. با توجه به تأثیر سرعت باد بر میزان تبخیرتعرق منطقه، برآورد تبخیرتعرق براساس تغییرات سرعت باد در قالب سه گروه شامل ایستگاههایی با سرعت باد کمتر از 48/2...
full textMy Resources
Journal title
volume 3 issue 4
pages 659- 667
publication date 2016-12-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023